Securing Funding from Industry

Working with Industry as Customer and Partner

Joshua D. Summers
Professor of Mechanical Engineering
Why trust me?

- Not really sure… but…

- Worked outside of academe
 - 30+ jobs

- Ran senior design
 - ~6 years
 - $350k in industry sponsorship solicited
 - Supervised 39+ projects with dozen+ sponsors

- Industry Sponsored Research/Projects
 - 43 funded projects (30 are/were industry sponsored)
 - $6.2M in funding ($4.0M in industry sponsorship)

- My wife says that I am a swell guy (some of the time)
CoES Research Forum

Why Industry Sponsorship?

- **Myths**
 - Non-competitive (easy to get?)
 - Not fundamental (only applied – engineering?)
 - Cannot publish

- **Truth**
 - Takes time to cultivate relationships
 - Repeat customers only when successful
 - Extremely demanding work
 - Rewarding

- **Why I do it**
 - Learning experiences for students
 - Opportunity to gather stories for class
 - Validate research
 - Motivate research
Lessons

- Never accept a “NO”
 - Take risks; Jump on opportunities
- Talk a little, listen a lot
 - Axioms of Customers:
 - Customer is always right &
 - Customer does not know what the customer needs/wants
- Naivety is a good thing (keep it)
 - Ask questions; you are not smarter than others
- Money is never an issue
 - Clemson Awards and Contracts will help you find a way
- SME’s are fun (and the future)
 - Small companies are good partners
Lessons

● Student projects \(\rightarrow\) research projects \(\rightarrow\) student projects
 – Always find ways to interact

● If it is the right thing to do, then do it
 – Good learning experiences for students = good projects

● Integrate other faculty (buy-in)
 – Collaboration is fun; if you cannot do it, others can

● Lawyers are not entirely evil (they are always willing to help)
 – Know the Clemson staff

● Nurture networks
 – Use former students (including undergraduates)
 – Use professional organizations
 – Use departmental Industry Advisory Boards
 – Use colleagues
 – Use friends
• Technology push does not work
 – “I have a solution” vs. “we can find a solution”

• Trust must be built
 – Regular meetings (in person); then regular meetings (phone)
 – Be responsive
 – Student projects are low cost; high reward starters
 – Introduce to other faculty that might be relevant

• Publishing is possible
 – If you focus on non-core competencies
 – Timeline is longer (need industry approval)

• Stay in contact
 – Find excuses to increase contact (invite to campus for guest lectures, to review projects, for seminars; send newsletters…)

• Know CU Staff
(Pitch to Industry)

COLLABORATE WITH CLEMSON
Undergraduate
- Extra Curricular Projects
 - Paid Consultancies (faculty contacted for support and employ students)
 - Paid Engineering Services (companies directly contract with students)
- Curricular Projects
 - Creative Inquiry (multi-age, multi-semester, collaborative projects)
 - Undergraduate capstone courses (ME 401 and ME 402)
 - Summer (3-6 weeks and international)
 - Semester (14 weeks)
- Internships and Cooperative Education

Graduate
- Course Based Projects
 - ME 870/ME 891: Design projects
- Research/Development Based Projects
Three structured opportunities:

- **Creative Inquiry (multi-year, multi-disciplinary, multi-age)**
 - BMW LED Headlight design
 - NASA Lunar wheel design
 - Rotary lawnmower blade redesign

- **ME 4010 (pre-capstone; design method)**
 - Service Learning (design, build, install wind tunnels for elementary classrooms)
 - “inventor outreach” (design, build French fry cutting machine)

- **ME 4020 (capstone)**
 - Industry sponsored projects
 - Parallel teams on one project
 - Projects assigned an advisory committee (2 faculty + 1 gradvisor)
 - Coordination/Solicitation done by 1 faculty (currently Mocko)
 - Joint program with other universities (~80 students in 2010/2011)
Hoowaki needs fast analysis and optimization work done. Want to find alternative geometries that can support given loads with a defined volume. Need external validation from University in support of the effort to “impress” Hoowaki customer.

Value:

- to students: a parametric design and analysis project, experience in scope creep
- to customer: new geometries; external validation

CEDAR
Clemson Engineering Design Applications and Research
jsummer@clemson.edu
http://www.clemson.edu/ces/cedar
A local businessman that runs a special event concession business approached Clemson University to design and fabricate a French Fry cutting device for <$2500 and attracts the crowd. ME 401 (Summer): designed a device for $3000 to fulfill request. Additional interest in a similar device for a restaurant.

Service Learning (current approach)

Value:
- to students: a design and build experience
- to customer: a finished device
ME4020 Semester-Long Projects

- Industry sponsored projects:
 - ~15 weeks in duration → 600 Manhours/team
 - Parallel teams (4-5 students) on projects
 - $10k per project (donation to department)
 - Teams design, prototype, test, build solutions
 - Advisory committee (2 faculty; 1 gradvisor)

- Objectives
 - Expose students to unstructured problems
 - Challenge students to develop professional communication skills
 - Give students the ownership of the projects

Fall 2011 Projects
- BMW: Ergonomic plug installer
- Cryovac: Beef primal fixture
- Rotary: Lawn mower blade testing
- TTI: Reciprocating saw test

Design of a road surface cleaning system for tire wear analysis (scale: diameter ≈ 20 ft)

Student demonstration a tail light installation fixture on a BMW X5 with associates.
Local entrepreneur had created a prototype small form factor personal tennis ball machine. Clemson addressed cost reduction, improved functionality, and addressed user interaction. The engineering team, two graduate students advised by faculty, held bi-weekly design reviews with the sponsor.

Value:
- To students: a design and build experience; experience in working with external sponsor
- To customer: engineering support for component selection; new concepts to simply system
Customer wanted a system to test prototype treads for mud release. Team at Clemson designed and built a system that is currently in use at sponsor’s research and development facility. Project included a follow-on validation project.

Value:
- To students: a design and build experience; experience in working with external sponsor
- To customer: engineering support for component selection; new concepts to simply system

jsummer@clemson.edu
http://www.clemson.edu/ces/cedar
Benefits to Industry

- Fresh look at your problems through impartial eyes
 - Student teams can bring a clean slate to your problem
- Extended access to graduating engineering students
 - An opportunity to “interview” an entire cohort of Clemson students
- Exposure to the latest tools, techniques, and technology
 - Students and faculty are trained in the latest design and analysis tools, in addition to a broad exposure of cutting edge research
- Multiple solutions using teams
 - Three to four distinct solutions developed, prototyped, and tested for every problem
- Access to Clemson facilities and faculty expertise
 - ME at CU is the largest engineering program in SC, and recognized as one of the top five Design Research programs in the nation
- Five solutions patented in the last five years
 - Sponsors have first right of refusal on all IP developed in the course is available

CEDAR
Clemson Engineering Design Applications and Research

jsummer@clemson.edu
http://www.clemson.edu/ces/cedar
STORY TIME
Challenges

- Ownership of the IP generated from these projects
 - Student owned, university owned, company owned?
- Guarantee of results
 - In most cases, design projects are sponsored through gifts to the department → cannot guarantee work product.
- Acquisition of material
 - Goods can not enter the University (State) possession.
- Clear expectations from industry partners and inexperience of students
 - Possible for scope creep and underestimation of time and cost.
- Liability of product development
 - Who will be liable if something goes wrong?
- Competition with local companies
 - Do not want to use University resources to undercut local shops
- University timeframes are typically in semesters (3-4 month segments)
 - Must align projects with the time frame of the university
Scholarship Impact

- **Funding**
 - 78%: 38 Graduates students supported (out of 49 total)

- **Scholarship**
 - 32%: 25 journal papers (out of 78)
 - 24%: 38 conference papers (out of 157)
 - 100%: 3 patents secured

- **Industry support is an enabler**
 - Problems in developing solutions → Motivations for research
 - Development efforts → Opportunities to test ideas
 - Funding support for students
 - Engineering experience for students
 - Excellent TEACHING Platforms

CEDAR
Clemson Engineering Design Applications and Research

jsummer@clemson.edu
http://www.clemson.edu/ces/cedar
Just ASK

Joshua D. Summers, Professor
203 Fluor Daniel Engineering Innovation Building (EIB)
Clemson Engineering Design Application and Research Group
Department of Mechanical Engineering
Clemson University
Clemson, SC 29634-0921
864.656.3295 (office)
jsummer@clemson.edu